Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Quantum neuromorphic computing (QNC) is a sub-field of quantum machine learning (QML) that capitalizes on inherent system dynamics. As a result, QNC can run on contemporary, noisy quantum hardware and is poised to realize challenging algorithms in the near term. One key issue in QNC is the characterization of the requisite dynamics for ensuring expressive quantum neuromorphic computation. We address this issue by proposing a building block for QNC architectures, what we call quantum perceptrons (QPs). Our proposed QPs compute based on the analog dynamics of interacting qubits with tunable coupling constants. We show that QPs are, with restricted resources, a quantum equivalent to the classical perceptron, a simple mathematical model for a neuron that is the building block of various machine learning architectures. \framing{Moreover, we show that QPs are theoretically capable of producing any unitary operation.} Thus, QPs are computationally more expressive than their classical counterparts. As a result, QNC architectures built our of QPs are, theoretically, universal. We introduce a technique for mitigating barren plateaus in QPs called entanglement thinning. We demonstrate QPs' effectiveness by applying them to numerous QML problems, including calculating the inner products between quantum states, entanglement witnessing, and quantum metrology. Finally, we discuss potential implementations of QPs and how they can be used to build more complex QNC architectures.more » « less
-
Quantum generative models hold the promise of accelerating or improving machine learning tasks by leveraging the probabilistic nature of quantum states, but the successful optimization of these models remains a difficult challenge. To tackle this challenge, we present a new architecture for quantum generative modeling that combines insights from classical machine learning and quantum phases of matter. In particular, our model utilizes both many-body localized (MBL) dynamics and hidden units to improve the optimization of the model. We demonstrate the applicability of our model on a diverse set of classical and quantum tasks, including a toy version of MNIST handwritten digits, quantum data obtained from quantum many-body states, and nonlocal parity data. Our architecture and algorithm provide novel strategies of utilizing quantum many-body systems as learning resources and reveal a powerful connection between disorder, interaction, and learning in quantum many-body systems. Published by the American Physical Society2024more » « less
-
Abstract Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2–6for large-scale processing. However, the overhead in the realization of error-corrected ‘logical’ qubits, in which information is encoded across many physical qubits for redundancy2–4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10–15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6distance fromd = 3 tod = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger–Horne–Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18with up to 48 logical qubits entangled with hypercube connectivity19with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors.more » « less
An official website of the United States government

Full Text Available